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What is Probabilistic 
Programming?

Probabilistic Programming Languages (PPL) are the next generation programming systems for 
statistical inference with first-class probabilistic primitives. 

Two goals: 

1. Write down flexible generative statistical models with ease (Modeling, Communication)

2. Solve them automatically (Inference)



Recent Interest
Language Ecosystem

Stan

BUGS/JAGS*

WebPPL JavaScript

LazyPPL Haskell

MonadBayes Haskell

Infer.NET (Microsoft) C#

Pyro (Uber) Python

PyMC3 Python

Bean Machine (Meta) Python

Language Ecosystem

Edward 1-2 (Google) Python

Gen Julia

Turing.jl Julia

Anglican/Church Clojure/Scheme

ProbLog Prolog

BLOG*

Hakaru

Birch

…

Many more: @Wikipedia „Probabilistic Programming“



The PPL Workflow: Three 
primitives

1. Write down a generative statistical model 

2. Feed in observations

3. Learn from the observations

4. … repeat

Goal:
◦ Sample from (approximate) posterior distribution 
◦ Compute expectations or probabilities

PPL = sample + observe + infer

any old language with 
random number generation Magic!?



Strengths of Probabilistic 
Programming

 observe + infer are fully integrated into one 
language

◦ Models can be any program
◦ Nested inference  Reasoning about Reasoning

 Models are expressive + highly flexible
◦ Fewer parameters, high explainability

Clarity & ease of use
◦ Accessibility for domain experts
◦ Easy adaption and exploration of models

 Applications
◦ Stats/ML: „Bayesian Machine Learning“
◦ Planning as Inference
◦ Epidemiology 
◦ Neuroscience
◦ Linguistics/theory of mind/communication
◦ Program Synthesis
◦ Education?



Learnings vs. Reasoning

LearningReasoning

Logic programming

Proof

Deep Learning

Optimization

Classical MLPPL

Inference



Tradeoff: Flexibility vs Efficiency

Flexibility
Automation
Efficiency

Gen, PyroWebPPL

Stan, JAGS Infer.NET



Why WebPPL
http://webppl.org/

No setup, runs in your browser

Familiar language (JavaScript + observe + infer)

Out-of-the-box visualization

Excellent resources
◦ Probabilistic Models of Cognition: Free interactive book http://probmods.org/ 
◦ The Design and Implementation of Probabilistic Programming Languages http://dippl.org/

http://webppl.org/
http://probmods.org/
http://dippl.org/


Recap: Bayesian 
Inference



Problem:

 Prior: 10% of population has covid

 Model: Tests have 80% sensitivity (true positive rate) and 98% specificity (true negative)

 Evidence: 1 positive test

 Posterior: 82% probability of covid

Recap: Bayesian inference

Bayesian inference



Bayes‘ law

P(hypothesis|evidence) = 
P(evidence|hypothesis) P(hypothesis)

P(evidence)

likelihood
posterior

prior

Thomas Bayes



Bayes‘ law
P(covid|pos)    = 

P(pos|covid) P(covid)

P(pos)

10% (Prior) 82% (Posterior)
Bayesian inference

0.8 * 0.1
0.8 * 0.1 + 0.02 * 0.9

P(pos|covid) P(covid)

P(pos|covid) P(covid) + P(pos|¬covid)P(¬covid)
=

= = 0.816



Changing the model
Let‘s make the following changes to the model

◦ What about 1 positive + 1 negative result?
◦ 2 positive + 1 negative?
◦ … multiple symptoms
◦ … multiple competing diseases

  don‘t do this by hand!

 



Inference with 
WebPPL



Inference with WebPPL

var test = function(has_covid) {
  var positive_prob = has_covid 
    ? 0.8
    : 0.02

  return flip(positive_prob) 
    ? 'pos’ 
    : 'neg'
}

Covid test result as a stochastic function of the underlying condition

// Model
var has_covid = flip(0.1)
var test_result = test(has_covid)
    
// Observation
condition(test_result == 'pos')
    
// Prediction
return has_covid



Full Program
var test = function(has_covid) {
  var positive_prob = has_covid ? 0.8 : 0.02
  return flip(positive_prob) ? 'pos' : 'neg'
}

viz(Infer(function() {
    // Model
    var has_covid = flip(0.1)
    var test_result = test(has_covid)
    
    // Observation
    condition(test_result == 'pos')
    
    // Prediction
    return has_covid
  }
))

Prior Posterior

Bayesian 
inference



Easy to add more observations
var test = function(has_covid) {
  var positive_prob = has_covid ? 0.8 : 0.02
  return flip(positive_prob) ? 'pos' : 'neg'
}

viz(Infer(function() {
    // Model
    var has_covid = flip(0.1)
    
    // Observation
    condition(test(has_covid) == 'pos')
    condition(test(has_covid) == 'neg')
    condition(test(has_covid) == 'pos’)
    
    // Prediction
    return has_covid
  }
))



Implementation



Inference algorithms
Inference is a hard problem (strictly harder than optimization). 

Different problems require different types of algorithms

But inference methods can easily be interchanged

Infer({method: “enumerate”, …}, function() {
    



Example with continuous 
variables

 viz(Infer({method: 'rejection'}, function() {
   var p = beta({a:2, b:2})
   condition(flip(p) == true)
   
   return p
 }))



Inference algorithms
Inference is a hard problem (strictly harder than optimization). 

But inference methods can easily be swapped

Exact inference (exhaustive enumeration, symbolic inference)

Optimization (Variational inference, EM)

Simulation (Monte-Carlo Methods)
◦ Rejection sampling
◦ Likelihood-weighted importance sampling
◦ Markov-Chain Monte Carlo (Metropolis-Hastings, HMC)
◦ Particle Filters

Infer({method: “enumerate”, …}, function() {
    



Implementation
 Need for composable abstractions

◦ sample and observe are purely abstract primitives, and have different meanings depending on the 
inference algorithm. E.g.
◦ Importance sampling  Generate random trace, record a likelihood factor
◦ Enumeration  call with all possible values
◦ MCMC  sample creates a resumable entry point

◦ Easiest to build on top of a purely functional language
◦ CPS transform, or even better: monads/effect handlers



Implementation
 class (Monad m) => MonadInfer m where
     flip :: Double -> m Bool
     score :: Double -> m ()

 data Dist a = Dist [(a,Double)] – for enumeration

 instance MonadInfer Dist where 
    flip p  = Dist [(True,p), (False,1-p)]
    score r = Dist [( (), r)]

e.g. Control.Monad.Bayes or [Ścibior‘2017]



Implementation
 Need for composable abstractions

◦ sample and observe are purely abstract primitives, and have different meanings depending on the 
inference algorithm. E.g.
◦ Importance sampling  Generate random trace, record a likelihood factor
◦ Enumeration  call with all possible values
◦ MCMC  sample creates a resumable entry point

◦ Easiest to build on top of a purely functional language
◦ CPS transform, or even better: monads/effect handlers

 Programmable inference (Gen/Pyro)
◦ modular building blocks for customizable inference algorithms
◦ guide programs for variational inference



Compositionality
 Implicature in Linguistics: Saying „some“ probably doesn‘t mean „all“

 We model this using nested inference 

var speaker = function(state, depth) {
  return Infer({method: 'enumerate'}, 
function() {
    var words = sample(sentencePrior)
    condition(state == sample(listener(words, 
depth)))
    return words
  })
};

var listener = function(words, depth) {
  return Infer({method: 'enumerate'}, function() {
    var state = sample(statePrior);
    var wordsMeaning = meaning(words)
    condition(depth == 0 ? wordsMeaning(state) :
              _.isEqual(words, 
sample(speaker(state, depth - 1))))
    return state;
  })
};

http://probmods.org/chapters/social-cognition.html

http://probmods.org/chapters/social-cognition.html


Verification
 Verifying implementations of PPLs is tricky: E.g. creative use of laziness (LazyPPL), autodiff etc. 

 Program transformation to increase efficiency

 Denotational semantics  Categorical probability theory

 Foundational requirements diverge from usual mathematical probability (measure theory):
◦ Quasi-Borel spaces [Heunen&al‘17] for random higher-order functions

var p = beta({a:1, b:1})

// rejects frequently
observe(flip(p) == true)

var p = beta({a:1, b:1})

// score by likelihood
factor(p)

var p = beta({a:2, b:1})



Summary
 Statistics literature is notoriously difficult to read

 When discussing statistical questions – do it in code!
◦ Unified langugage for modeling and observations
◦ Encode your domain knowledge (law, humanities, science)
◦ Quickly run, adapt, explore sophisticated models

Everyone can use PPL as a way to explore and communicate statistics. Try it in your browser!
◦ http://webppl.org/
◦ http://probmods.org

http://webppl.org/
http://probmods.org/


Interactive 
Examples



Interactive Examples
 Real-world example due to Hanna Schraffenberger

 Legal Example

 Advanced [from probmods.org]

 Category Learning: http://probmods.org/chapters/hierarchical-models.html

 Learning Logical Explanations (Occam‘s Razor): http://probmods.org/chapters/lot-learning.html

 Reasoning about Reasoning, Linguistic Implicature: 
http://probmods.org/chapters/social-cognition.html

http://probmods.org/chapters/hierarchical-models.html
http://probmods.org/chapters/lot-learning.html
http://probmods.org/chapters/social-cognition.html


Hanna‘s Problem
 “We had an experiment with 1000 participants, divided over three general conditions A, B and 
C. After the experiment we ask them an attention-check question to see if they paid attention 
and remember their condition correctly ("did you see A, B or C"?). It now turns out that:

 - 200 people give an incorrect answer to this question

 - 400 said they cannot remember 

 - 400 had it correct”

 Question: How many people just guessed?



A Legal Example
 Police arrest suspects A,B,C,D,E.

◦ Testimony: „I am 80% sure the perpetrator is among A,B,C,D.“
◦ A,B,C are found to have alibis

 Problem: What‘s the probability that D is the perpetrator?

 Quiz:

 (I) 80%

 (II) 50%



A Legal Example
 Police arrest suspects A,B,C,D,E.

◦ Testimony: „I am 80% sure the perpetrator is among A,B,C,D.“
◦ A,B,C are found to have alibis

 Problem: What‘s the probability that D is the perpetrator?

 How to formally interpret such statements? 

 Why does the testimony even give new information? (Same if you guess!)
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