
Introduction to
Probabilistic
Programming
SWS SEMINAR, 30 AUGUST 2022

DARIO STEIN

damast93

dario.stein@ru.nl

About me
2022 – present: Postdoc at iHub (Bart Jacobs)

2017 – 2022: PhD Computer Science (Sam Staton, Univ of Oxford)

Before: Pure Maths (Hamburg, Cambridge)

Interests:

Programming language semantics, probabilistic programming

Category theory, categorical probability theory, logic & type theory, quantum computation

Looking into: Theorem Proving, ML

damast93

dario.stein@ru.nl

What is Probabilistic
Programming?

Probabilistic Programming Languages (PPL) are the next generation programming systems for
statistical inference with first-class probabilistic primitives.

Two goals:

1. Write down flexible generative statistical models with ease (Modeling, Communication)

2. Solve them automatically (Inference)

Recent Interest
Language Ecosystem

Stan

BUGS/JAGS*

WebPPL JavaScript

LazyPPL Haskell

MonadBayes Haskell

Infer.NET (Microsoft) C#

Pyro (Uber) Python

PyMC3 Python

Bean Machine (Meta) Python

Language Ecosystem

Edward 1-2 (Google) Python

Gen Julia

Turing.jl Julia

Anglican/Church Clojure/Scheme

ProbLog Prolog

BLOG*

Hakaru

Birch

…

Many more: @Wikipedia „Probabilistic Programming“

The PPL Workflow: Three
primitives

1. Write down a generative statistical model

2. Feed in observations

3. Learn from the observations

4. … repeat

Goal:
◦ Sample from (approximate) posterior distribution
◦ Compute expectations or probabilities

PPL = sample + observe + infer

any old language with
random number generation Magic!?

Strengths of Probabilistic
Programming

 observe + infer are fully integrated into one
language

◦ Models can be any program
◦ Nested inference Reasoning about Reasoning

 Models are expressive + highly flexible
◦ Fewer parameters, high explainability

Clarity & ease of use
◦ Accessibility for domain experts
◦ Easy adaption and exploration of models

 Applications
◦ Stats/ML: „Bayesian Machine Learning“
◦ Planning as Inference
◦ Epidemiology
◦ Neuroscience
◦ Linguistics/theory of mind/communication
◦ Program Synthesis
◦ Education?

Learnings vs. Reasoning

LearningReasoning

Logic programming

Proof

Deep Learning

Optimization

Classical MLPPL

Inference

Tradeoff: Flexibility vs Efficiency

Flexibility
Automation
Efficiency

Gen, PyroWebPPL

Stan, JAGS Infer.NET

Why WebPPL
http://webppl.org/

No setup, runs in your browser

Familiar language (JavaScript + observe + infer)

Out-of-the-box visualization

Excellent resources
◦ Probabilistic Models of Cognition: Free interactive book http://probmods.org/
◦ The Design and Implementation of Probabilistic Programming Languages http://dippl.org/

http://webppl.org/
http://probmods.org/
http://dippl.org/

Recap: Bayesian
Inference

Problem:

 Prior: 10% of population has covid

 Model: Tests have 80% sensitivity (true positive rate) and 98% specificity (true negative)

 Evidence: 1 positive test

 Posterior: 82% probability of covid

Recap: Bayesian inference

Bayesian inference

Bayes‘ law

P(hypothesis|evidence) =
P(evidence|hypothesis) P(hypothesis)

P(evidence)

likelihood
posterior

prior

Thomas Bayes

Bayes‘ law
P(covid|pos) =

P(pos|covid) P(covid)

P(pos)

10% (Prior) 82% (Posterior)
Bayesian inference

0.8 * 0.1
0.8 * 0.1 + 0.02 * 0.9

P(pos|covid) P(covid)

P(pos|covid) P(covid) + P(pos|¬covid)P(¬covid)
=

= = 0.816

Changing the model
Let‘s make the following changes to the model

◦ What about 1 positive + 1 negative result?
◦ 2 positive + 1 negative?
◦ … multiple symptoms
◦ … multiple competing diseases

 don‘t do this by hand!

Inference with
WebPPL

Inference with WebPPL

var test = function(has_covid) {
 var positive_prob = has_covid
 ? 0.8
 : 0.02

 return flip(positive_prob)
 ? 'pos’
 : 'neg'
}

Covid test result as a stochastic function of the underlying condition

// Model
var has_covid = flip(0.1)
var test_result = test(has_covid)

// Observation
condition(test_result == 'pos')

// Prediction
return has_covid

Full Program
var test = function(has_covid) {
 var positive_prob = has_covid ? 0.8 : 0.02
 return flip(positive_prob) ? 'pos' : 'neg'
}

viz(Infer(function() {
 // Model
 var has_covid = flip(0.1)
 var test_result = test(has_covid)

 // Observation
 condition(test_result == 'pos')

 // Prediction
 return has_covid
 }
))

Prior Posterior

Bayesian
inference

Easy to add more observations
var test = function(has_covid) {
 var positive_prob = has_covid ? 0.8 : 0.02
 return flip(positive_prob) ? 'pos' : 'neg'
}

viz(Infer(function() {
 // Model
 var has_covid = flip(0.1)

 // Observation
 condition(test(has_covid) == 'pos')
 condition(test(has_covid) == 'neg')
 condition(test(has_covid) == 'pos’)

 // Prediction
 return has_covid
 }
))

Implementation

Inference algorithms
Inference is a hard problem (strictly harder than optimization).

Different problems require different types of algorithms

But inference methods can easily be interchanged

Infer({method: “enumerate”, …}, function() {

Example with continuous
variables

 viz(Infer({method: 'rejection'}, function() {
 var p = beta({a:2, b:2})
 condition(flip(p) == true)

 return p
 }))

Inference algorithms
Inference is a hard problem (strictly harder than optimization).

But inference methods can easily be swapped

Exact inference (exhaustive enumeration, symbolic inference)

Optimization (Variational inference, EM)

Simulation (Monte-Carlo Methods)
◦ Rejection sampling
◦ Likelihood-weighted importance sampling
◦ Markov-Chain Monte Carlo (Metropolis-Hastings, HMC)
◦ Particle Filters

Infer({method: “enumerate”, …}, function() {

Implementation
 Need for composable abstractions

◦ sample and observe are purely abstract primitives, and have different meanings depending on the
inference algorithm. E.g.
◦ Importance sampling Generate random trace, record a likelihood factor
◦ Enumeration call with all possible values
◦ MCMC sample creates a resumable entry point

◦ Easiest to build on top of a purely functional language
◦ CPS transform, or even better: monads/effect handlers

Implementation
 class (Monad m) => MonadInfer m where
 flip :: Double -> m Bool
 score :: Double -> m ()

 data Dist a = Dist [(a,Double)] – for enumeration

 instance MonadInfer Dist where
 flip p = Dist [(True,p), (False,1-p)]
 score r = Dist [((), r)]

e.g. Control.Monad.Bayes or [Ścibior‘2017]

Implementation
 Need for composable abstractions

◦ sample and observe are purely abstract primitives, and have different meanings depending on the
inference algorithm. E.g.
◦ Importance sampling Generate random trace, record a likelihood factor
◦ Enumeration call with all possible values
◦ MCMC sample creates a resumable entry point

◦ Easiest to build on top of a purely functional language
◦ CPS transform, or even better: monads/effect handlers

 Programmable inference (Gen/Pyro)
◦ modular building blocks for customizable inference algorithms
◦ guide programs for variational inference

Compositionality
 Implicature in Linguistics: Saying „some“ probably doesn‘t mean „all“

 We model this using nested inference

var speaker = function(state, depth) {
 return Infer({method: 'enumerate'},
function() {
 var words = sample(sentencePrior)
 condition(state == sample(listener(words,
depth)))
 return words
 })
};

var listener = function(words, depth) {
 return Infer({method: 'enumerate'}, function() {
 var state = sample(statePrior);
 var wordsMeaning = meaning(words)
 condition(depth == 0 ? wordsMeaning(state) :
 _.isEqual(words,
sample(speaker(state, depth - 1))))
 return state;
 })
};

http://probmods.org/chapters/social-cognition.html

http://probmods.org/chapters/social-cognition.html

Verification
 Verifying implementations of PPLs is tricky: E.g. creative use of laziness (LazyPPL), autodiff etc.

 Program transformation to increase efficiency

 Denotational semantics Categorical probability theory

 Foundational requirements diverge from usual mathematical probability (measure theory):
◦ Quasi-Borel spaces [Heunen&al‘17] for random higher-order functions

var p = beta({a:1, b:1})

// rejects frequently
observe(flip(p) == true)

var p = beta({a:1, b:1})

// score by likelihood
factor(p)

var p = beta({a:2, b:1})

Summary
 Statistics literature is notoriously difficult to read

 When discussing statistical questions – do it in code!
◦ Unified langugage for modeling and observations
◦ Encode your domain knowledge (law, humanities, science)
◦ Quickly run, adapt, explore sophisticated models

Everyone can use PPL as a way to explore and communicate statistics. Try it in your browser!
◦ http://webppl.org/
◦ http://probmods.org

http://webppl.org/
http://probmods.org/

Interactive
Examples

Interactive Examples
 Real-world example due to Hanna Schraffenberger

 Legal Example

 Advanced [from probmods.org]

 Category Learning: http://probmods.org/chapters/hierarchical-models.html

 Learning Logical Explanations (Occam‘s Razor): http://probmods.org/chapters/lot-learning.html

 Reasoning about Reasoning, Linguistic Implicature:
http://probmods.org/chapters/social-cognition.html

http://probmods.org/chapters/hierarchical-models.html
http://probmods.org/chapters/lot-learning.html
http://probmods.org/chapters/social-cognition.html

Hanna‘s Problem
 “We had an experiment with 1000 participants, divided over three general conditions A, B and
C. After the experiment we ask them an attention-check question to see if they paid attention
and remember their condition correctly ("did you see A, B or C"?). It now turns out that:

 - 200 people give an incorrect answer to this question

 - 400 said they cannot remember

 - 400 had it correct”

 Question: How many people just guessed?

A Legal Example
 Police arrest suspects A,B,C,D,E.

◦ Testimony: „I am 80% sure the perpetrator is among A,B,C,D.“
◦ A,B,C are found to have alibis

 Problem: What‘s the probability that D is the perpetrator?

 Quiz:

 (I) 80%

 (II) 50%

A Legal Example
 Police arrest suspects A,B,C,D,E.

◦ Testimony: „I am 80% sure the perpetrator is among A,B,C,D.“
◦ A,B,C are found to have alibis

 Problem: What‘s the probability that D is the perpetrator?

 How to formally interpret such statements?

 Why does the testimony even give new information? (Same if you guess!)

	Introduction to Probabilistic Programming
	About me
	What is Probabilistic Programming?
	Recent Interest
	The PPL Workflow: Three primitives
	Strengths of Probabilistic Programming
	Learnings vs. Reasoning
	Tradeoff: Flexibility vs Efficiency
	Why WebPPL
	Recap: Bayesian Inference
	Recap: Bayesian inference
	Bayes‘ law
	Bayes‘ law (2)
	Changing the model
	Inference with WebPPL
	Inference with WebPPL (2)
	Full Program
	Easy to add more observations
	Implementation
	Inference algorithms
	Example with continuous variables
	Inference algorithms (2)
	Implementation (2)
	Implementation (3)
	Implementation (4)
	Compositionality
	Verification
	Summary
	Interactive Examples
	Interactive Examples (2)
	Hanna‘s Problem
	A Legal Example
	A Legal Example (2)

